The Goldman-Rota Identity and the Grassmann Scheme

نویسنده

  • Murali K. Srinivasan
چکیده

We inductively construct an explicit (common) orthogonal eigenbasis for the elements of the Bose-Mesner algebra of the Grassmann scheme. The key step is a constructive, linear algebraic interpretation of the GoldmanRota recurrence for the number of subspaces of a finite vector space. This interpretation shows that the up operator on subspaces has an explicitly given recursive structure. Using the interpretation above we inductively construct an explicit orthogonal symmetric Jordan basis with respect to the up operator and write down the singular values, i.e., the ratio of the lengths of the successive vectors in the Jordan chains. The collection of all vectors in this basis of a fixed rank m forms a (common) orthogonal eigenbasis for the elements of the Bose-Mesner algebra of the Grassmann scheme of m-dimensional subspaces. We also pose a bijective proof problem on the spanning trees of the Grassmann graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A geometric identity for Pappus' theorem.

An expression in the exterior algebra of a Peano space yielding Pappus' theorem was originally given by Doubilet, Rota, and Stein [Doubilet, P., Rota, G.-C. & Stein, J. (1974) Stud. Appl. Math. 8, 185-216]. Motivated by an identity of Rota, I give an identity in a Grassmann-Cayley algebra of step 3, involving joins and meets alone, which expresses the theorem of Pappus.

متن کامل

Reciprocal Degree Distance of Grassmann Graphs

Recently, Hua et al. defined a new topological index based on degrees and inverse of distances between all pairs of vertices. They named this new graph invariant as reciprocal degree distance as 1 { , } ( ) ( ( ) ( ))[ ( , )] RDD(G) = u v V G d u  d v d u v , where the d(u,v) denotes the distance between vertices u and v. In this paper, we compute this topological index for Grassmann graphs.

متن کامل

An Identity in Rota-baxter Algebras

We give explicit formulae and study the combinatorics of an identity holding in all Rota-Baxter algebras. We describe the specialization of this identity for a couple of examples of Rota-Baxter algebras.

متن کامل

بررسی اثر آگونیست و آنتاگونیست های مختلف گیرنده هیستامینی بر هماهنگی حرکتی موش صحرایی در تست Rota rod

Background and purpose: Sedation is regarded as a common side effect of most antihistamines, and limits the clinical utility of classical antihistaminic agents, while newer antihistamines are nonsedating. Çonsidering the importance of this phenomenon in the present study, the role of different histamine receptor mechanisms in mediating the sedation were investigated in rat rota rod test. M...

متن کامل

A novel key management scheme for heterogeneous sensor networks based on the position of nodes

Wireless sensor networks (WSNs) have many applications in the areas of commercial, military and environmental requirements. Regarding the deployment of low cost sensor nodes with restricted energy resources, these networks face a lot of security challenges. A basic approach for preparing a secure wireless communication in WSNs, is to propose an efficient cryptographic key management protocol be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2014